Potential Paths for the Hydrogen-Bond Relaxing with $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ Cluster Size

Yongli Huang, ${ }^{\dagger, \#}$ Xi Zhang, ${ }^{\ddagger}{ }^{\ddagger, \#}$ Zengsheng Ma, ${ }^{\dagger}$ Guanghui Zhou, ${ }^{\S}$ Yinyan Gong, ${ }^{\|}$and Chang Q Sun*, ${ }^{*}$
${ }^{\dagger}$ Key Laboratory of Low-dimensional Materials and Application Technology (Ministry of Education) and Faculty of Materials Sciences and Engineering, Xiangtan University, Xiangtan 411105, China
${ }^{\ddagger}$ Institute of Nanosurface Science and Engineering, Shenzhen University, Shenzhen 518060, China
${ }^{\S}$ Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081, China
"Institute for Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
${ }^{\perp}$ NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Relaxation of the hydrogen bond $(\mathrm{O}: \mathrm{H}-\mathrm{O})$ between oxygen ions of undercoordinated molecules fascinates the behavior of water nanodroplets and nanobubbles. However, probing such potentials remains yet far from reality. Here we show that the Lagrangian solution (Huang et al. J. Phys. Chem. B 2013, 117, 13639) transforms the observed H-O bond ($x=$ H) and $\mathrm{O}: \mathrm{H}$ nonbond ($x=L$) lengths and their characteristic phonon frequencies $\left(d_{x}, \omega_{x}\right)$ (Sun et al. J. Phys. Chem. Lett. 2013, 4, 2565) into their respective force constants and cohesive energies $\left(k_{x}, E_{x}\right)$, which results in mapping of the potential paths for the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond relaxing with $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ cluster size. Results show that molecular undercoordination not only reduces its size ($\mathrm{H}-\mathrm{O}$ length d_{H}) with enhanced $\mathrm{H}-\mathrm{O}$ energy from the bulk value of 3.97 to 5.10 eV for a $\mathrm{H}_{2} \mathrm{O}$ monomer but also enlarges their separation ($\mathrm{O}: \mathrm{H}$ distance d_{L}) with $\mathrm{O}: \mathrm{H}$ energy reduction from 95 to 35 meV for a dimer. The $\mathrm{H}-\mathrm{O}$ energy gain raises the melting point of water skin from the bulk value 273 to 310 K , and the $\mathrm{O}: \mathrm{H}$ energy loss lowers the freezing temperature of a 1.4 nm sized droplet from the bulk value 258 to 202 K , which indicates droplet size induced dispersion of the quasisolid phase boundaries.

1. INTRODUCTION

As the source and central part of all lives, water and ice have attracted much attention because of their anomalous behavior when subjected to an external stimulus. ${ }^{1-5}$ Undercoordinated water molecules that can be found at the edges of the hydrogen-bonded networks such as snowflakes, clouds, fogs, defects, bubbles, droplets, hydration shells, skins of bulk water, and ice are even more fascinating than those that are fully coordinated in the bulk. ${ }^{6,7}$ For instance, water droplets encapsulated in hydrophobic nanopores ${ }^{8,9}$ or ultrathin water films deposited on graphite, silica, and certain metals behave like ice, or called polywater, at room temperature. A monolayer of water melts at $325 \mathrm{~K}^{10}$ compared to the skin of bulk water melting at $310 \mathrm{~K}^{6}{ }^{6}$ The monolayer film of water at room temperature manifests "quasisolid" behavior and a hydrophobic nature that prevents it from being wetted itself by a water droplet. ${ }^{11,12}$

Molecular undercoordination elevated T_{m} is always coupled with depression of the homogeneous ice nucleation temperature $\left(T_{\mathrm{N}}\right)$. The T_{N} drops from the bulk value of 258^{13} to 242 K for 4.4 nm sized droplets, 220 K for 3.4 nm sized droplets, ${ }^{7}$ 205 K for 1.4 nm sized droplets, ${ }^{14}$ and 172 K for 1.2 nm sized
droplets. ${ }^{15}$ Freezing transition for clusters containing $1-18$ molecules cannot be observed at temperatures even down to $120 \mathrm{~K} .{ }^{16}$ Water and ice share the common supersolid skin ${ }^{6}$ that is elastic, hydrophobic, less dense, and thermally more stable, which makes ice the most slippery and water skin the toughest ever known.

The skin $\mathrm{O}-\mathrm{O}$ distance for water expands by at least 5.9%, compared to a 4.6% contraction for liquid methanol. ${ }^{17}$ The skin bond contracts by up to 12% or even more for other normal substances. ${ }^{18}$ The $\mathrm{O}-\mathrm{O}$ distance in the skin and between a dimer is about $3.00 \AA$; the $\mathrm{O}-\mathrm{O}$ distance in the bulk varies from 2.70^{19} to $2.85 \AA,{ }^{20}$ depending on experimental conditions. Besides, the volume of water confined in the 5.1 and 2.8 nm sized TiO_{2} pores expands by 4% and 7.5%, respectively, with respect to bulk water. ${ }^{21}$ The confined droplet forms the gel-like polywater. An extended tetrahedron containing two $\mathrm{H}_{2} \mathrm{O}$ molecules unifies the density-geometry-size separation of molecules packed in water and ice, which defines the $\mathrm{O}-\mathrm{O}$

[^0]length of $2.6950 \AA, \mathrm{O}-\mathrm{H}$ length of $1.6946 \AA$, and $\mathrm{H}-\mathrm{O}$ bond length of $1.0004 \AA$ at $4{ }^{\circ} \mathrm{C}$ for the tetrahedrally coordinated water molecules. ${ }^{22}$

Furthermore, molecular undercoordination imparts water local charge densification, ${ }^{23-25}$ binding energy entrapment, ${ }^{26-29}$ and nonbonding electron polarization. ${ }^{24}$ For instance, the O 1 s level shifts more deeply from the bulk value of 536.6 to 538.1 eV and to 539.7 eV when the bulk water is transformed into skin or into gaseous molecules. ${ }^{30-32}$ An ultrafast liquid-jet UPS ${ }^{24}$ resolved that the vertical bound energy (being equivalent to work function) for the solvated electrons changes from 3.3 eV when in the bulk interior to 1.6 eV when in the skin. The bound energy decreases further with the number N of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ clusters approaching to zero for isomers. Molecular undercoordination stiffens the $\mathrm{H}-\mathrm{O}$ stretching phonon ω_{H} from the bulk value $3200 \mathrm{~cm}^{-1}$ to $3450 \mathrm{~cm}^{-1}$ for the skins of water and ice. ${ }^{33-35}$ The ω_{H} shifts from 3200 to $3650 \mathrm{~cm}^{-1}$ when the N of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ cluster drops from 6 to 1 of the gaseous monomer. ${ }^{36-41}$

These entities make water nanodroplets and nanobubbles mechanically hardly destroyable and thermally much more stable than they are at the millimeter scale. ${ }^{42,43}$ What is the difference between the undercoordinated water molecules and those fully coordinated in the bulk? Why do the O 1s binding energy and the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ phonon frequencies change with molecular cluster size? Why are droplets and bubbles mechanically stronger and thermally more stable?

The inter- and intramolecular interactions between undercoordinated water molecules and the associated electronics, energetics, and phononics could be crucial to these observations. Therefore, it is indispensable to explore the potential paths for the segmented $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond relaxing with $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ size. However, quantitative information about the evolution of these potentials, particularly for interaction between undercoordinated water molecules, and their indication to the anomalies of water droplets and bubbles at the nanometer scale remain unresolved.

Teixeira ${ }^{44}$ suggested in 1998 that a symmetric double-well potential exists between neighboring O ions to accommodate the hydrogen proton "frustrating" ${ }^{45}$ between these two wells. When the O ions are forced closer, the pairing potential wells turn into single located midway between O ions. In 2004, Wernet et al. ${ }^{46}$ hypothesized instead the existence of an asymmetric H-bonding potential which Soper ${ }^{47}$ further investigated by assuming different charges on hydrogen protons in order to create this asymmetry and examine whether that could be supported by diffraction data. Considerable efforts have also been made since then by many researchers ${ }^{48-51}$ toward formulating and quantifying such asymmetric potentials.

Anomalies due to molecular undercoordination are beyond the scope of currently available models including the nonrigid water potential ${ }^{52}$ though some recent experimental and theoretical studies have revealed covalent characteristics of the hydrogen bonding. ${ }^{53-55}$ Tremendous work has been done on the phonon relaxation dynamics using neutron, Raman, and infrared absorption methods under various conditions. ${ }^{56-58}$ However, the state-of-the-art techniques, including X-ray and
neutron diffraction and electron and phonon spectroscopies could hardly prove this hypothesis as these techniques could not directly detect such local and short-range potentials.

With the aid of phonon spectrometrics and quantum computations using density functional theory (DFT) ${ }^{59}$ and molecular dynamics (MD) ${ }^{60}$ methods, we have resolved, from the perspective of $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond cooperativity, ${ }^{18}$ multiple issues demonstrated by compressed ice, ${ }^{61,62}$ by cooled water and ice, ${ }^{13,63}$ by salted water, ${ }^{64}$ and by undercoordinated molecules. ${ }^{6,65}$ These anomalies include the Mpemba paradox (hot water freezes faster), ${ }^{63}$ the Hofmeister effect (NaCl modulates the surface tension and the phonon frequencies of its solution), ${ }^{64}$ floating of ice (density anomaly), ${ }^{13}$ slipperiness of ice (supersolid skin), ${ }^{6}$ proton centralization in ice phase X and low compressibility of ice, ${ }^{61}$ water's tough skin (supersolid skin), ${ }^{6}$ etc. Progress made insofar has formed the subjects of recent treatises ${ }^{1,66}$ for more details.

We have demonstrated that the Lagrangian oscillating dynamics could be insofar most efficient ${ }^{62}$ to deal with the hydrogen bond ($\mathrm{O}: \mathrm{H}-\mathrm{O}$) relaxation dynamics in the strongly correlated and fluctuating water ice system. This strategy has transformed the known $\mathrm{O}: \mathrm{H}(x=L)$ and $\mathrm{H}-\mathrm{O}(x=H)$ segmental length and stretching vibration frequency $\left(d_{x}, \omega_{x}\right)$ into their force constants and bond energies $\left(k_{x}, E_{x}\right)$ of the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond at each equilibrium as a function of pressure. ${ }^{62} \mathrm{~A}$ further extension of the practice could lead to mapping the potential paths for the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond relaxing with cluster size with the due relaxation of the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond in length and vibration frequencies as a function of cluster size. ${ }^{6,65}$ Observations provide insight into the physical mechanism for the unusual thermodynamic behavior, melting point elevation, and freezing point depression of water nanodroplets and nanobelts from the perspective of undercoordination dispersed quasisolid phase boundaries.

2. PRINCIPLES

2.1. $\mathrm{O}: \mathrm{H}-\mathrm{O}$ Bond Potential Functions. The hydrogen bond, $\mathrm{O}^{2 \delta-}: \mathrm{H}^{\delta+}-\mathrm{O}^{2 \delta-}(\delta<1$; for simplicity in discussion, we take $\delta<1$ and omit the valence sign convention), consists of the intermolecular $\mathrm{O}: \mathrm{H}$ nonbond and the intramolecular $\mathrm{H}-\mathrm{O}$ polar covalent bond rather than either of them alone. The ":" is the electron lone pair of oxygen, and the "-" represents the bonding pair shared by O and H ions. We considered a quasilinear $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond geometry for simplicity because the $\angle \mathrm{O}: \mathrm{H}-\mathrm{O}$ containing angle is largely irrelevant to the physical properties such as the O 1 s core level shift and phase transition temperatures. ${ }^{13}$

By averaging the surrounding background of long-range interactions of $\mathrm{H}_{2} \mathrm{O}$ molecules, protons, and the nuclear quantum effect on fluctuations, ${ }^{67,68}$ we focused on the shortrange interactions in a $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond with the H atom being taken as the coordination origin. The short-range interactions include the Lennard-Jones (L-J) potential limited to the O:H nonbond, the exchange interaction to the $\mathrm{H}-\mathrm{O}$ polar-covalent bond, and the Coulomb repulsion between the lone and the shared electron pairs attached to adjacent oxygen ions

$$
\begin{cases}V_{\mathrm{L}}\left(r_{\mathrm{L}}\right)=V_{\mathrm{L} 0}\left[\left(\frac{d_{\mathrm{L} 0}}{r_{\mathrm{L}}}\right)^{12}-2\left(\frac{d_{\mathrm{L} 0}}{r_{\mathrm{L}}}\right)^{6}\right] & \left(\mathrm{O}: \mathrm{H} ; \text { L-J potential }\left(V_{\mathrm{L} 0}, d_{\mathrm{L} 0}\right)\right) \tag{1}\\ V_{\mathrm{H}}\left(r_{\mathrm{H}}\right)=V_{\mathrm{H} 0}\left[e^{-2 \alpha\left(r_{\mathrm{H}}-d_{\mathrm{H} 0}\right)}-2 e^{-\alpha\left(r_{\mathrm{H}}-d_{\mathrm{H} 0}\right)}\right] & \left(\mathrm{H}-\mathrm{O} ; \text { Morse potential }\left(\alpha, V_{\mathrm{H} 0}, d_{\mathrm{H} 0}\right)\right) \\ V_{\mathrm{C}}\left(r_{\mathrm{C}}\right)=\frac{q_{\mathrm{O}}^{2}}{4 \pi \varepsilon_{\mathrm{r}} \varepsilon_{0} r_{\mathrm{C}}} & \left(\mathrm{O}-\mathrm{O} ; \text { Coulomb potential }\left(q_{\mathrm{O}}, \varepsilon, r_{\mathrm{C}}\right)\right)\end{cases}
$$

where $V_{\mathrm{L} 0}$ and $V_{\mathrm{H} 0}$, commonly denoted $E_{\mathrm{L} 0}$ and $E_{\mathrm{H} 0}$, are the potential well depths, or bond energies, of the respective segment. The $r_{x}(x=\mathrm{L}, \mathrm{H}$, and C$)$ denotes the interionic distances (corresponding to the length of the springs in Figure 1) at arbitrary position, and the $d_{x 0}$ is at the equilibrium point

Figure 1. Schematic illustration of the segmented $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond with springs representing the short-range interactions with the H atom being the coordination origin. The intramolecular exchange interaction is limited to the $\mathrm{H}-\mathrm{O}$ bond (H, right-hand side). The intermolecular van der Waals like (vdW-like) force is limited to the $\mathrm{O}: \mathrm{H}$ nonbond (L, left-hand side). The interelectron-pair Coulomb repulsion (Crepulsion) force is limited to the region of $\mathrm{O}-\mathrm{O}$. The pair of dots on oxygen (large green dot) in the left denotes the electron lone pair, and the pair of dots on the right denotes the bonding pair. The Coulomb repulsion pushes both O ions away from their ideal equilibrium positions. Molecular undercoordination shortens and stiffens the $\mathrm{H}-\mathrm{O}$ bond and meanwhile lengthens and weakens the $\mathrm{O}: \mathrm{H}$ nonbond, as indicated by $z<4$. 65
without the involvement of Coulomb repulsion. The α parameter determines the width of the potential well. ε_{r} is the relative dielectric constant of bulk ice. ε_{0} is the vacuum dielectric constant. The q_{O} denotes the net charge on oxygen ions. A sum term of all long-range interactions of the neighboring H protons or O ions is averaged as the background.

We are concerned more about the equilibrium coordinates of bond length and bond energy $\left(d_{x}, E_{x}\right)$ than the shape of the potentials. Because of the short-range nature of the interactions, only the solid lines in the shaded area for the basic $\mathrm{O}: \mathrm{H}-\mathrm{O}$ unit in Figure 1 are effective. One must switch off a particular potential and on the other immediately once moves to the boundary of the region or across the atomic site. The $\mathrm{O}: \mathrm{H}$ cohesive energy at the 0.1 eV level is about 3% of 4.0 eV for the $\mathrm{H}-\mathrm{O}$ bond, which is within the error tolerance but plays the key role in determining the anomalies of water and ice. Spatial decay of any potential is strictly forbidden in the irrespective regime across. Under external excitation, the shape of the potentials may remain but the equilibrium coordinates $\left(d_{x}, E_{x}\right)$ must vary with the stimulus applied.
2.2. Lagrangian Oscillating Dynamics. The segmented $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond performs as an asymmetric oscillator pair coupled by the Coulomb interaction and bridged by the H atom at the fixed coordination origin. ${ }^{1}$ The reduced mass of the $\left(\mathrm{H}_{2} \mathrm{O}\right):\left(\mathrm{H}_{2} \mathrm{O}\right)$ oscillator is $m_{\mathrm{L}}=18 \times 18 /(18+18) m_{0}=9 m_{0}$, and that of the $\mathrm{H}-\mathrm{O}$ oscillator is $m_{\mathrm{H}}=1 \times 16 /(1+16) m_{0}=$ $16 / 17 m_{0}$ with m_{0} being the unit proton mass of 1.66×10^{-27} kg . The motion of the asymmetric, coupled $\mathrm{O}: \mathrm{H}-\mathrm{O}$ oscillator pair follows the Lagrangian equation ${ }^{62}$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial\left(\mathrm{~d} q_{i} / \mathrm{d} t\right)}\right)-\frac{\partial L}{\partial q_{i}}=Q_{i} \tag{2}
\end{equation*}
$$

The Lagrangian $L=T-V$ consists of the total kinetic energy T and the total potential energy $V . Q_{i}$ is the generalized nonconservative force. Here, it is the force due to the undercoordination effect f_{z} (molecular undercoordination shortens and stiffens the $\mathrm{H}-\mathrm{O}$ bond spontaneously, which lengthens and softens the $\mathrm{O}: \mathrm{H}$ nonbond through Coulomb repulsion. ${ }^{65}$ The time-dependent $q_{i}(t)=u_{x}$ represents the generalized variables, denoting the coordinates of O atoms in the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond represented by the x springs. The kinetic energy T consists of two terms, as the H is fixed at the coordination origin

$$
\begin{equation*}
T=\frac{1}{2}\left[m_{\mathrm{L}}\left(\frac{\mathrm{~d} u_{\mathrm{L}}}{\mathrm{~d} t}\right)^{2}+m_{\mathrm{H}}\left(\frac{\mathrm{~d} u_{\mathrm{H}}}{\mathrm{~d} t}\right)^{2}\right] \tag{3}
\end{equation*}
$$

The potential energy V is composed of three terms given in eq 1: the vdW-like L-J interaction $V_{\mathrm{L}}\left(u_{\mathrm{L}}\right)$, the exchange interaction $V_{\mathrm{H}}\left(u_{\mathrm{H}}\right)$, and the Coulomb repulsion $V_{\mathrm{C}}\left(u_{\mathrm{C}}\right)=$ $V_{\mathrm{C}}\left(u_{\mathrm{H}}-u_{\mathrm{L}}\right)$.We took the u_{x} as the coordinates and d_{x} as the segmental length. Therefore, $d_{\mathrm{C} 0}=-u_{\mathrm{L} 0}+u_{\mathrm{H} 0}$ is the nearest $\mathrm{O}-\mathrm{O}$ distance at equilibrium without Coulomb repulsion involvement. The $d_{\mathrm{C}}=-u_{\mathrm{L}}+u_{\mathrm{H}}$ is the $\mathrm{O}-\mathrm{O}$ distance with Coulomb repulsion involvement. The O atom dislocates from the equilibrium to another equilibrium by $\Delta_{x}=u_{x}-u_{x 0}$ upon the Coulomb repulsion being involved. A harmonic approximation of these potentials at each equilibrium by omitting the higher-order terms in their Taylor's series yields

$$
\begin{align*}
V & =V_{\mathrm{L}}\left(u_{\mathrm{L}}\right)+V_{\mathrm{H}}\left(u_{\mathrm{H}}\right)+V_{\mathrm{C}}\left(u_{\mathrm{H}}-u_{\mathrm{L}}\right) \\
\approx & {\left[V_{\mathrm{L}}\left(u_{\mathrm{L} 0}\right)+V_{\mathrm{H}}\left(u_{\mathrm{H} 0}\right)+V_{\mathrm{C}}\left(u_{\mathrm{C}}\right)\right]-V_{\mathrm{C}}^{\prime} \Delta u_{\mathrm{C}} } \\
& +\frac{1}{2}\left[k_{\mathrm{L}} \Delta u_{\mathrm{L}}^{2}+k_{\mathrm{H}} \Delta u_{\mathrm{H}}^{2}+k_{\mathrm{C}} \Delta u_{\mathrm{C}}^{2}\right] \tag{4}
\end{align*}
$$

where $V_{x}\left(u_{x 0}\right)$ is the potential well depths ($n=0$ terms) of the respective bond, and Δu_{x} is the amplitude of vibration. Noting that the Coulomb potential is out of equilibrium and that the repulsion force is always positive, one can then expand these potentials at their equilibrium based on harmonic approx-
imation, which ensures sufficient accuracy of the elucidated potential paths. ${ }^{62}$

In the Taylor series, the terms of $n=1$ equal zero at equilibrium, $V_{x}^{\prime}{ }_{x}\left(u_{x 0}\right)=0$, without Coulomb repulsion; $V_{x}^{\prime}\left(u_{x}\right)$ $+V^{\prime}{ }_{\mathrm{C}}\left(u_{\mathrm{C}}\right)=0$, with Coulomb repulsion; $V_{x}^{\prime}\left(u_{x}\right)+V_{\mathrm{C}}^{\prime}\left(u_{\mathrm{C}}\right)+f_{z}$ $=0$, with an addition of the molecular undercoordination effect $(z<4)$. Here $V_{\mathrm{C}}^{\prime} \neq 0$ denotes the first-order derivative of the Coulomb potential at the equilibrium due to the sum $V_{x}^{\prime}\left(u_{x}\right)+$ $V_{\mathrm{C}}^{\prime}\left(u_{\mathrm{C}}\right)=0$. Terms of $n=2$, or the potential curvatures, denote the force constants, i.e., $k_{x}=V^{\prime \prime}=\mathrm{d}^{2} V_{x} / \mathrm{d} u_{x}^{2} u_{x 0}$ for harmonic oscillators. Terms of $n \geq 3$ are insignificant and negligible, which is adequate for seeking the nature and trend of the potential paths. The involvement of the Coulomb repulsion dislocates both O ions slightly outwardly by Δ_{x} from their respective initial equilibrium, shifting the atomic distance from $d_{x 0}$ to $d_{x}=d_{x 0}+\Delta_{x}$. The Coulomb repulsion raises the respective potential well depths from $E_{x 0}$ to E_{x} by the same amount as both oxygen ions are subject to the same repulsive force.

Substituting eqs 3 and 4 into eq 2 yields the coupled motion equations for the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ oscillator pair,

$$
\left\{\begin{array}{l}
m_{\mathrm{L}} \frac{\mathrm{~d}^{2} u_{\mathrm{L}}}{\mathrm{~d} t^{2}}+\left(k_{\mathrm{L}}+k_{\mathrm{C}}\right) u_{\mathrm{L}}-k_{\mathrm{C}} u_{\mathrm{H}}+k_{\mathrm{C}}\left(\Delta_{\mathrm{L}}-\Delta_{\mathrm{H}}\right) \tag{5}\\
\quad-V_{\mathrm{C}}^{\prime}-f_{\mathrm{z}}=0 \\
m_{\mathrm{H}} \frac{\mathrm{~d}^{2} u_{\mathrm{H}}}{\mathrm{~d} t^{2}}+\left(k_{\mathrm{H}}+k_{\mathrm{C}}\right) u_{\mathrm{H}}-k_{\mathrm{C}} u_{\mathrm{L}}-k_{\mathrm{C}}\left(\Delta_{\mathrm{L}}-\Delta_{\mathrm{H}}\right) \\
\quad+V_{\mathrm{C}}^{\prime}+f_{\mathrm{z}}=0
\end{array}\right.
$$

2.3. Analytical Solutions. 2.3.1. General Solution. A Laplace transformation of the Lagrangian turns out the following

$$
\left\{\begin{array}{l}
u_{\mathrm{L}}=\frac{A_{\mathrm{L}}}{\gamma_{\mathrm{L}}} \sin \gamma_{\mathrm{L}} t+\frac{B_{\mathrm{L}}}{\gamma_{\mathrm{H}}} \sin \gamma_{\mathrm{H}} t \tag{6}\\
u_{\mathrm{H}}=\frac{A_{\mathrm{H}}}{\gamma_{\mathrm{L}}} \sin \gamma_{\mathrm{L}} t+\frac{B_{\mathrm{H}}}{\gamma_{\mathrm{H}}} \sin \gamma_{\mathrm{H}} t
\end{array}\right.
$$

The coefficient denotes the vibrational amplitude of the respective segment. γ_{x} is the angular frequency of the x oscillator, which depends on the force constant and the reduced mass of the oscillating dimer. The $\mathrm{O}: \mathrm{H}$ and the $\mathrm{H}-\mathrm{O}$ segments share the same form of eigenvalues of stretching vibration. The following correlates the k_{x} and the ω_{x}

$$
\begin{align*}
k_{\mathrm{H}, \mathrm{~L}}= & 2 \pi^{2} m_{\mathrm{H}, \mathrm{~L}} c^{2}\left(\omega_{\mathrm{L}}^{2}+\omega_{\mathrm{H}}^{2}\right)-k_{\mathrm{C}} \\
& \pm \sqrt{\left[2 \pi^{2} m_{\mathrm{H}, \mathrm{~L}} c^{2}\left(\omega_{\mathrm{L}}^{2}-\omega_{\mathrm{H}}^{2}\right)\right]^{2}-m_{\mathrm{H}, \mathrm{~L}} k_{\mathrm{C}}^{2} / m_{\mathrm{L}, \mathrm{H}}} \tag{7}
\end{align*}
$$

where c is the velocity of light traveling in vacuum. Omitting the Coulomb repulsion will degenerate the coupled oscillators into the isolated $\left(\mathrm{H}_{2} \mathrm{O}\right):\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{H}-\mathrm{O}$ oscillators with respective vibration frequency of $\omega_{x}=(2 \pi c)^{-1}\left(k_{x} / m_{x}\right)^{1 / 2}$.
2.3.2. Specific Solution. Given the frequency ω_{x} and the force constant k_{C} of Coulomb repulsion, one can obtain the force constant k_{x}, the potential well depth $E_{x 0}$, and the binding energy E_{x}, at each equilibrium of these two segments during relaxation. The force constant due to Coulomb repulsion is k_{C} $=q_{\mathrm{O}}^{2} /\left(2 \pi \varepsilon_{\mathrm{r}} \varepsilon_{0} d_{\mathrm{C}}^{3}\right)=0.17 \mathrm{eV} / \AA^{2}$ at equilibrium by taking $\varepsilon_{0}=$ $8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ for vacuum, $\varepsilon_{\mathrm{r}}=3.2$ for ice, and $q_{\mathrm{O}}=0.652 \mathrm{e}$ for the undercoordinated skin molecules, as optimized using DFT calculations. ${ }^{6}$

Calculations ${ }^{62}$ showed that the $k_{x}\left(\omega_{x}\right)$ changes with the respective segmental vibration frequency ω_{x}. The terms of the $k_{\mathrm{L}}\left(\omega_{\mathrm{H}}\right)$ and the $k_{\mathrm{H}}\left(\omega_{\mathrm{L}}\right)$ remain, however, almost constant. Therefore, eq 7 simplifies into the expression for the coupled oscillators

$$
\begin{equation*}
\omega_{x}=(2 \pi c)^{-1} \sqrt{\frac{k_{x}+k_{\mathrm{C}}}{m_{x}}} \tag{8}
\end{equation*}
$$

Table 1 shows the procedure of derivatives and the outcome with known $\left(d_{x}, \omega_{x}\right)$ as input. For instance, at equilibrium,

Table 1. Derivatives of the L-J and Morse Potentials at Equilibrium and at Each Quasiequilibrium Position, Which Transits the Known $\left(d_{x}, \omega_{x}\right)$ into the (k_{x}, E_{x})

derivatives	$\mathrm{O}: \mathrm{H}$ potential	$\mathrm{H}-\mathrm{O}$ potential	outcome
$V_{x}^{\prime}\left(u_{x 0}\right)=0$	-		$E_{x 0}$
$V_{x}^{\prime}\left(u_{x}\right)+V_{c}^{\prime}\left(u_{\mathrm{C}}\right)=0$	-		E_{x}, u_{x}
$V_{x}^{\prime \prime}=k_{x}\left(k_{\mathrm{C}} \omega_{x}\right)$	$72 E_{\mathrm{L0}} / d_{\mathrm{L} 0}^{2}$	$2 \alpha^{2} E_{\mathrm{H} 0}$	α
$V_{x}^{\prime \prime \prime}$	$-1512 E_{\mathrm{L} 0} / d_{\mathrm{L0}}^{3}$	$-6 \alpha^{3} E_{\mathrm{H} 0}$	-

$V_{x}{ }^{\prime}\left(u_{x 0}\right)=0$ defines the $E_{\mathrm{x} 0}$ and $d_{\mathrm{x} 0} ; V_{x}{ }^{\prime}\left(u_{x}\right)+V_{\mathrm{C}}{ }^{\prime}\left(u_{\mathrm{C}}\right)=0$ defines the E_{x}. The difference between E_{x} and $E_{\mathrm{x} 0}$ is the Coulomb repulsion energy E_{C}. Likewise, $V_{x}{ }^{\prime \prime}=k_{x}$ and $V_{x}{ }^{\prime \prime}+$ $V_{\mathrm{C}}{ }^{\prime \prime}=k_{x}+k_{\mathrm{C}}$ (see eq 8). The known k_{C} and ω_{x} define the $V_{x}{ }^{\prime \prime}$ value and parameters involved in the respective potential function, given in eq 1 .

With the derived values of $k_{\mathrm{L}}=2.39 \mathrm{eV} / \AA^{2}, k_{\mathrm{H}}=36.09 \mathrm{eV} /$ \AA^{2}, and the known $E_{\mathrm{H}}=3.97 \mathrm{eV}$ and $E_{\mathrm{L}}=0.095 \mathrm{eV}$, we can determine all the parameters in the L-J and the Morse potentials, as well as the force fields of the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond at the ambient

$$
\left\{\begin{array}{l}
k_{\mathrm{L}}=72 E_{\mathrm{L} 0} / d_{\mathrm{L} 0}^{2}=2.39 \mathrm{eV} / \mathrm{A}^{2} \\
k_{\mathrm{H}}=2 \alpha^{2} E_{\mathrm{H} 0}=36.09 \mathrm{eV} / \mathrm{A}^{2}
\end{array}\right.
$$

or

$$
\left\{\begin{align*}
E_{\mathrm{L} 0}=2.39 \times 1.654^{2} / 72 & =0.091 \mathrm{eV} \tag{9}\\
\alpha=(36.09 / 3.97 / 2)^{1 / 2} & =2.13 \mathrm{~A}^{-1}
\end{align*}\right.
$$

With the known Coulomb potential, the computed segmental d_{x} and ω_{x} functions of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N},{ }^{65}$ one can obtain parameters in the L-J $\left(E_{\mathrm{L} 0}, d_{\mathrm{L} 0}\right)$ and the Morse $\left(E_{\mathrm{H} 0}, \alpha\right)$ potentials, as illustrated in Table 1. The E_{L} may have different values subjecting to experimental conditions or approaching methods. For instance, the E_{L} varies from 0.05 eV for ice at zero pressure to 0.25 eV at 40 GPa and turns to 0.16 eV at 60 GPa pressure. ${ }^{62}$ It is therefore meaningful to consider the E_{x} values associated with experimental conditions. The currently used $E_{\mathrm{H}}=3.97 \mathrm{eV}$ was obtained by fitting the $T_{\mathrm{C}}-P$ profiles for both ice VII-VIII phase transition and ice melting and the $E_{\mathrm{L}}=0.095 \mathrm{eV}$ by fitting to the temperature dependence of the water surface tension. ${ }^{1}$

Given the $\omega_{\mathrm{L}}=218 \mathrm{~cm}^{-1}$ and $\omega_{\mathrm{H}}=3225 \mathrm{~cm}^{-1}$ for the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ cluster 65 and the known k_{C}, eq 8 yields $k_{\mathrm{L}}=2.39 \mathrm{eV} / \AA^{2}$ and $k_{\mathrm{H}}=36.09 \mathrm{eV} / \AA^{2}$. With the known $d_{\mathrm{L}}=1.659 \AA$ and $d_{\mathrm{H}}=$ $0.993 \AA$, under Coulomb repulsion, one can obtain the length $u_{\mathrm{L} 0}$ of $-1.654 \AA$ and the $u_{\mathrm{H} 0}$ of $0.9927 \AA$ at equilibrium. Coulomb repulsion lengthens the $\mathrm{O}-\mathrm{O}$ distance by $0.0053 \AA$ from 2.6467 to $2.6520 \AA$, according to the equilibrium conditions with and without Coulomb repulsion involvement.

Table 2. N Dependence of the Energetics at Different Order of Differentials As a Function of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ Size ${ }^{a}$

N	$E_{x}(\mathrm{eV})$					
	$\mathrm{O}: \mathrm{H}$ potential $V_{\mathrm{L}}(r)$			$\mathrm{H}-\mathrm{O}$ potential $V_{\mathrm{H}}(r)$		
	0th (10^{-3})	2nd (10^{-5})	$3 \mathrm{rd}\left(10^{-6}\right)$	0th	2nd (10^{-6})	$3 \mathrm{rd}\left(10^{-10}\right)$
6	90.73	2.45	0.47	3.97	1.62	0.10
5	69.42	3.20	0.80	4.19	1.51	9.03
4	66.16	3.35	0.88	4.25	1.43	8.27
3	40.59	5.27	2.21	4.65	1.10	5.29
2	34.66	6.02	2.93	4.79	0.94	4.09

${ }^{a}$ Both the $\mathrm{O}: \mathrm{H}$ nonbond and $\mathrm{H}-\mathrm{O}$ bond are insensitive to the higher-order derivatives.

Figure 2. Cluster size (N) dependence of the segmental (a) length d_{x}, (b) phonon frequency ω_{x}, (c) force constant k_{x}, and (d) cohesive energy E_{x} of the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond in $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ clusters. ${ }^{65}$ Scattered data in (b) are measurements. ${ }^{36-38,41}$ The broken line in (b) modifies the calculation ω_{L} with respect to that, $220 \mathrm{~cm}^{-1}$, for bulk water and to that the calculated ω_{H} matches the measured value at $N=2$. Solid triangles in (d) are measured E_{L} for the bulk $(0.095 \mathrm{eV}),{ }^{69}$ and E_{H} are measurements from bulk $(3.97 \mathrm{eV}),{ }^{6}$ skin $(4.66 \mathrm{eV}),{ }^{1}$ and gaseous monomers $(5.10 \mathrm{eV}) .{ }^{70}$

Table 3. DFT-Derived Segmental Length $d_{x}, \angle \mathrm{O}: \mathrm{H}-\mathrm{O}$ Containing Angle θ, and Phonon Frequency ω_{x} for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ Clusters ${ }^{65 a}$

	monomer	dimer	trimer	tetramer	pentamer	hexamer	bulk 13
N	1	2	3	4	5	6	Ih
$d_{\mathrm{H}}(\AA)$	0.969	0.973	0.981	0.986	0.987	0.993	1.010
$d_{\mathrm{L}}(\AA)$	-	1.917	1.817	1.697	1.668	1.659	1.742
θ (deg)	-	163.6	153.4	169.3	177.3	168.6	170.0
$\omega_{\mathrm{L}}\left(\mathrm{cm}^{-1}\right)$	-	184	198	229	251	260	-
$\omega_{\mathrm{L}}\left(\mathrm{cm}^{-1}\right)$	-	184	190	200	210	218	220
$\omega_{\mathrm{H}}\left(\mathrm{cm}^{-1}\right)$	3732	3565	3387	3194	3122	3091	-
$\omega_{\mathrm{H}}\left(\mathrm{cm}^{-1}\right)^{50-52,55}$	3650	3575	3525	3380	3350	3225	3150
$\Theta_{\text {DL }}(\mathrm{K})$	-	167	171	180	189	196	$198{ }^{69}$
$\Theta_{\text {DH }}(\mathrm{K})$	3650	3575	3525	3380	3350	3225	3150
$T_{\mathrm{N}}(\mathrm{K})$	-	94	110	180	188	246	258
$T_{\mathrm{m}}(\mathrm{K})$	-	322	318	291	289	273	273

${ }^{a}$ Presented are also N dependence of the Debye temperatures $\Theta_{\mathrm{D} x}$ freezing temperature T_{N}, and melting point T_{m} estimated herewith. Indicates the corrected ω_{L} as captioned in Figure 2^{b}. ${ }^{b}$ Experimentally observed T_{m} elevation and T_{N} depression: $T_{\mathrm{m}}=325 \mathrm{~K}$ (monolayer); ${ }^{10} 310 \mathrm{~K}$ (skin of bulk). ${ }^{6} T_{\mathrm{N}}=242 \mathrm{~K}(4.4 \mathrm{~nm}$ droplet $) ;{ }^{7} 220 \mathrm{~K}\left(3.4 \mathrm{~nm}\right.$ droplet) $;^{7} 205 \mathrm{~K}\left(1.4 \mathrm{~nm}\right.$ droplet) ${ }^{14} 172 \mathrm{~K}(1.2 \mathrm{~mm}$ droplet $) ;{ }^{15}<120 \mathrm{~K}(1-18$ molecules $){ }^{16}$

These values may be subject to accuracy due to the artifact in the calculation algorithm and limitation of available probing techniques. However, these values do reflect the nature origin and the general trend of the segmental relaxation under Coulomb repulsion and molecular undercoordination, which dominate the performance of water ice at the nanometer scale.

3. LOCAL POTENTIAL PATHS FOR THE RELAXED O:H-O BOND

3.1. Accuracy and Reliability. Table 2 lists the zeroth, the first, the second, and the third derivatives of the Taylor series as a function of $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ cluster size. For both the $\mathrm{O}: \mathrm{H}$ nonbond and the $\mathrm{H}-\mathrm{O}$ bond, the contribution of the high-order terms to
the respective binding energy is negligibly small. Therefore, the harmonious approximation at each equilibrium site is valid in the first-order approximation for the nature origin and the trend of variation.
3.2. N-Dependent d_{x}, ω_{x}, k_{x}, and E_{x}. Figure $2 \mathrm{a}, \mathrm{b}$ and Table 3 featured the N dependence of the d_{x} and ω_{x} values obtained using DFT computations. ${ }^{65}$ The present analytical solution transforms these eluded d_{x} and ω_{x} into the force constant and bond energy $\left(k_{x}, E_{x}\right)$ of the respective segment of the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond, from one equilibrium to another, as the N is reduced. This transformation results in mapping the potential paths for the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond at relaxation (see results featured in Table 4 and Figure 2c,d). The counters of the equilibrium

Table 4. N Dependence of the $\left(k_{x}, E_{x}, \Delta_{x}\right)$ for the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ Bond in $\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ Clusters ${ }^{a}$

N	E_{L} (meV)	E_{H} (eV)	k_{L} $\left(\mathrm{eV} / \AA^{2}\right)$	k_{H} $\left(\mathrm{eV} / \AA^{2}\right)$	Δ_{L} $\left(10^{-3} \AA\right)$	Δ_{H} $\left(10^{-4} \AA\right)$
6	90.70	3.97	2.39	36.09	4.53	2.99
5	69.39	4.20	1.81	38.39	5.95	2.80
4	66.13	4.23	1.67	39.01	6.34	2.71
3	40.54	4.62	0.90	42.99	10.84	2.26
2	34.60	4.68	0.69	44.35	13.23	2.05

${ }^{a}$ The $\mathrm{O}: \mathrm{H}$ relaxation $\left(\Delta_{\mathrm{L}}\right)$ is more significant that the $\mathrm{H}-\mathrm{O}$ bond $\left(\Delta_{\mathrm{H}}\right)$ from one N value to the next.
points follow the forms of the respective potentials, as given in eq 1 . Therefore, one has to consider the relaxation of the bond potentials when the object is subject to stimulus, instead of keeping the potentials at fixed equilibria.

MD calculations ${ }^{6}$ suggested that the $\mathrm{H}-\mathrm{O}$ bond contracts from the bulk value of ~ 1.00 to ~ 0.95 at the skin, which is associated with $\mathrm{O}: \mathrm{H}$ elongation from ~ 1.68 to $\sim 1.90 \AA$ with high fluctuation. This cooperative relaxation results in a 6.8% d_{OO} elongation or a 13% density loss of the skin. The measured d_{OO} of $2.965 \AA^{17}$ yields the lengths of $d_{\mathrm{H}}=0.8406 \AA$ and $d_{\mathrm{L}}=$ $2.1126 \AA$, which turns out a $0.75 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ skin mass density. Consistency between these observations and the current Lagrangian transformation reveals the true situation of the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond relaxation and the associated mass density and their correlation with the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond potential paths varying with molecular undercoordination.
3.3. Potential Paths. Figure 3 shows the evolution of the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond potential paths with $\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{N}}$ size, which agrees with experimental results (Figure 2d). At $N=6, \mathrm{O}$ atoms
dislocate from the equilibrium (blue dots) outwardly by different amounts with identical energy elevation once the Coulomb repulsion is involved. When the N reduces from 6 to 2, the $\mathrm{H}-\mathrm{O}$ bond contracts from 0.993 to $0.973 \AA$, and its cohesive energy shifts from 3.97 to 4.68 eV , agreeing with the changing trend from bulk $(3.97 \mathrm{eV})$ to the skin $(4.66 \mathrm{eV})$ and to the monomer in the gaseous phase $(5.10 \mathrm{eV}) .{ }^{70}$ The O:H expands from 1.659 to $1.917 \AA$, and the energy shifts from 90.70 to 34.60 meV , compared with the bulk value of 95 $\mathrm{meV} .{ }^{69}$ These values may be subject to accuracy, as the DFT calculations are algorithm sensitive. ${ }^{65}$ Compared is the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ potential path for compressed ice, which takes the opposite trend of cluster size reduction. ${ }^{62}$

4. THERMODYNAMICS OF UNDERCOORDINATED WATER MOLECULES

4.1. T_{m} Elevation and T_{N} Depression. The droplet-size effect on T_{m} and T_{N} is often referred to as "superheating" at melting and "supercooling" at freezing. Supercooling, also known as undercooling, is the process of lowering the temperature of a liquid or a gas below its freezing point without it becoming a solid. ${ }^{71}$ Superheating is the opposite. Supercooled water occurs in the form of small droplets in clouds and plays a key role in the processing of solar and terrestrial radiative energy fluxes. Supercooled water is also important for life at subfreezing conditions for the commercial preservation of proteins and cells and for the prevention of hydrate formation in nature gas pipelines. In fact, T_{m} elevation is different from "superheating, and T_{N} depression is different from "supercooling". The former is intrinsic, and the latter is process dependent.

Generally, melting a specific atom inside a normal substance requires heat that is a fraction of its cohesive energy, $E_{\mathrm{C}}=z E_{z}$, i.e., the sum of bond energy E_{z} over its coordination neighbors (z or CN). The T_{m} of a solid changes with the solid size because of the skin atomic undercoordination and the varied fraction of undercoordinated atoms in the skin. ${ }^{18}$ However, for water and ice, the presence of the critical temperatures at 273 K $\left(T_{\mathrm{m}}\right)$ and $258 \mathrm{~K}\left(T_{\mathrm{N}}\right),{ }^{13}$ for transiting the bulk liquid into the quasisolid and then into solid, indicates that a quasisolid (or quasiliquid) phase exists in this temperature regime. However, the quasisolid phase is absent from the existing phase diagram of water and ice.

Why and how does droplet size affect the T_{m} and the T_{N} ?
4.2. O:H-O Bond Specific Heat Disparity. First, one has to consider the specific heat per bond $\eta\left(T / \Theta_{\mathrm{D}}\right)$ in Debye

Figure 3. Potential paths (red circles) for the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond relaxing with $(\mathrm{a})\left(\mathrm{H}_{2} \mathrm{O}\right)_{N}$ cluster size N (r. to $\left.1 .: N=6,5,4,3,2\right)$ and (b) pressure (r. to 1.: $P=0,5,10,15,20,30,40,50,60 \mathrm{GPa}) .{ }^{62}$ Blue dots are the equilibrium without interoxygen Coulomb repulsion, $V_{x}^{\prime}=0$. Red circles in the (a) rightmost and (b) leftmost are in the equilibrium, $V_{x}^{\prime}+V_{C}^{\prime}=0$, and the rest meets $V_{x}^{\prime}+V_{C}^{\prime}+f_{\mathrm{ex}}=0$. The f_{ex} is the hidden force due to stimulus. Results indicate (a) that molecular undercoordination reduces the $\mathrm{H}_{2} \mathrm{O}$ size $\left(d_{\mathrm{H}}\right)$ but increases their separations $\left(d_{\mathrm{L}}\right)$ with $\mathrm{H}-\mathrm{O}$ bond stiffening and $\mathrm{O}: \mathrm{H}$ nonbond softening. Compression has the opposite effect to molecular undercoordination on $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond relaxation.
approximation when dealing with the thermodynamic behavior of a substance from the atomistic point of view. The specific heat is regarded as a macroscopic quantity integrated over all bonds of the specimen, which is also the amount of energy required to raise the temperature of the substance by $1^{\circ} \mathrm{C}$. The specific heat per bond is obtained by dividing the bulk specific heat by the total number of bonds involved. ${ }^{9 / 2}$ For other usual materials, one bond represents all on average, and therefore, there is only one specific heat for the representative bond. The thermal response of all the bonds is identical, without any discrimination in responding to thermal excitation. ${ }^{73}$

However, for water ice, the representative $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond is composed of two segments that must have their respective specific heat. The strong disparity between the specific heat $\eta_{x}\left(T / \Theta_{\mathrm{D} x}\right)$, as illustrated in Figure 4a, makes water perform

Figure 4. Superposition of the specific heat $\eta_{x}\left(T / \Theta_{\mathrm{D} x}\right)$ curves yields two intersecting temperatures T_{m} and T_{N} that define the boundaries of the solid/quasisolid/liquid phase. Molecular undercoordination $(z<$ 4) stretches $\eta_{\mathrm{H}}\left(T / \Theta_{\mathrm{DH}}\right)$ by raising the $\Theta_{\mathrm{DH}}\left(\omega_{\mathrm{H}}\right)$ and depresses the $\eta_{\mathrm{L}}\left(T / \Theta_{\mathrm{DL}}\right)$ by lowering the $\Theta_{\mathrm{DL}}\left(\omega_{\mathrm{L}}\right)$, which disperses the intersecting temperatures in opposite directions. Therefore, nanodroplets, nanobubbles, and water ice skins undergo simultaneously T_{N} depression and T_{m} elevation, and the extent of dispersion varies with the fraction of undercoordinated molecules of the object. ${ }^{42}$
differently from other normal substance with only one $\eta(T /$ $\left.\Theta_{\mathrm{D}}\right)$ curve. Parameters that characterize the respective $\eta_{x}(T /$ $\Theta_{\mathrm{D} x}$) include the Debye temperature $\Theta_{\mathrm{D} x}$ and the thermal integration of the $\eta_{x}\left(T / \Theta_{\mathrm{D} x}\right)$. The $\Theta_{\mathrm{D} x}$, which is lower than the $T_{\mathrm{m} x}$, determines the rate of the $\eta_{x}\left(T / \Theta_{\mathrm{D} x}\right)$ curve reaching saturation. The $\eta_{x}\left(T / \Theta_{\mathrm{D} x}\right)$ curve of the segment with a relatively lower $\Theta_{\mathrm{D} x}$ value will rise to saturation quicker than the other segment. The $\Theta_{\mathrm{D} x}$ is proportional to the characteristic frequency of vibration ω_{x}, according to Einstein's relation: $\hbar \omega_{x}$ $=k \Theta_{\mathrm{D} x}$, with \hbar and k being constant.

On the other hand, the integral of the $\eta_{x}\left(T / \Theta_{\mathrm{D}_{x}}\right)$ curve from 0 K to the $T_{\mathrm{m} x}$ is proportional to the cohesive energy E_{x} per segment. ${ }^{72}$ The $T_{\mathrm{m} x}$ is the temperature at which the vibration amplitude of an atom/molecule expands abruptly to more than 3% of its diameter irrespective of the environment or the size of a molecular cluster. ${ }^{74,75}$ Thus, with the known values of $\omega_{\mathrm{L}} \sim$ $200 \mathrm{~cm}^{-1}$ for $\mathrm{O}: \mathrm{H}$ stretching and $\omega_{\mathrm{H}} \sim 3200 \mathrm{~cm}^{-1}$ for $\mathrm{H}-\mathrm{O}$ stretching, ${ }^{13} \Theta_{\mathrm{DL}}=198 \mathrm{~K}<273 \mathrm{~K}\left(T_{\mathrm{m}}\right), E_{\mathrm{L}}=0.095 \mathrm{eV}$, ${ }^{69}$ and $E_{\mathrm{H}}=3.97 \mathrm{eV},{ }^{65}$ one can estimate $\Theta_{\mathrm{DH}} \approx 16 \times \Theta_{\mathrm{DL}} \approx 3200 \mathrm{~K}$ and $T_{\mathrm{mH}} \gg \Theta_{\mathrm{DH}}$ form the $\mathrm{H}-\mathrm{O}$ bond from the following:

$$
\left\{\begin{align*}
& \Theta_{\mathrm{DL}} / \Theta_{\mathrm{DH}} \approx 198 / \Theta_{\mathrm{DH}} \tag{10}\\
& \approx \omega_{\mathrm{L}} / \omega_{\mathrm{H}} \\
& \approx 200 / 3200 \sim 1 / 16 \\
&\left(\int_{0}^{T_{\mathrm{mH}}} \eta_{\mathrm{H}} \mathrm{~d} t\right) /\left(\int_{0}^{T_{\mathrm{mL}}} \eta_{\mathrm{L}} \mathrm{~d} t\right) \\
& \approx E_{\mathrm{H}} / E_{\mathrm{L}} \\
& \approx 4.0 / 0.1 \sim 40
\end{align*}\right.
$$

The η_{L} ends at $T_{\mathrm{mL}}=273 \mathrm{~K}$ for the $\mathrm{O}: \mathrm{H}$ nonbond, and the η_{H} ends at $T_{\mathrm{mH}} \sim 3200 \mathrm{~K}$ for the $\mathrm{H}-\mathrm{O}$ bond, which means that the area covered by the η_{H} curve is 40 times that covered by the η_{L} curve.
4.3. Water Quasisolid Phase Boundary Dispersivity. Second, a superposition of these two η_{x} curves yields two intersecting temperatures that divide the full temperature range into phases of liquid, quasisolid, and solid with different $\eta_{\mathrm{L}} / \eta_{\mathrm{H}}$ ratios (see Figure 4a). In the liquid and in the solid phase ($\eta_{\mathrm{L}} /$ $\eta_{\mathrm{H}}<1$), the $\mathrm{O}: \mathrm{H}$ nonbond contracts more than the $\mathrm{H}-\mathrm{O}$ expands at cooling, resulting in the cooling densification of water and ice., ${ }^{7,14}$ In the quasisolid phase, the $\mathrm{O}: \mathrm{H}$ and the $\mathrm{H}-$ O swap roles $\left(\eta_{\mathrm{H}} / \eta_{\mathrm{L}}<1\right)$: the $\mathrm{H}-\mathrm{O}$ contracts less than the $\mathrm{O}: \mathrm{H}$ expands at cooling, so the $\Delta d_{\mathrm{OO}}>0$ and water in quasisolid phase become less dense as it cools, which is responsible for ice floating. ${ }^{13}$ At the quasisolid phase boundaries $\left(\eta_{\mathrm{H}} / \eta_{\mathrm{L}}=1\right), \Delta d_{\mathrm{L}}$ and Δd_{H} change sign, which correspond to density extremes. Ideally, the T_{m} corresponds to the maximal density at $4{ }^{\circ} \mathrm{C}$ liquid and the T_{N} the minimal density at $-15{ }^{\circ} \mathrm{C}$ for bulk water. ${ }^{7,14,76}$

One can imagine what will happen to the phase boundaries by raising the Θ_{DH} and meanwhile lowering the Θ_{DL}. The η_{L} will saturate quicker and the η_{H} slower than they were in the bulk standard. This process will raise the T_{m} and lower the T_{N}. With the known bulk values of $\Theta_{\mathrm{DL}}=198 \mathrm{~K}, T_{\mathrm{m}}=273 \mathrm{~K}, T_{\mathrm{N}}=$ 258 K , and the respective ω_{x} (in Table 3) and E_{x} (in Table 4) one can estimate the cluster size dependence of the $\Theta_{\mathrm{D} x}, T_{\mathrm{m}}$, and T_{N} using the following relationships ${ }^{18}$

$$
\left\{\begin{array}{l}
\Theta_{\mathrm{D} x} \propto \omega_{x} \\
T_{N, \mathrm{~m}} \propto E_{\mathrm{L}, \mathrm{H}}
\end{array}\right.
$$

Numerical reproduction of the $T_{\mathrm{m}}(P)$ profiles ${ }^{66}$ indicates that the T_{m} is proportional to E_{H}, and Figure 4a suggests that the T_{N} be proportional to E_{L}. In order to minimize calculation artifacts, a modification of the $\omega_{\mathrm{L}}(N)$ curve in Figure 2b is made with respect to the measured value of $220 \mathrm{~cm}^{-1}$ for bulk water and to that the calculated ω_{x} matches the measured value at $N=2$. This modification improves the precision of estimating cluster size dependence of the Θ_{DL}. As featured in Table 3, the estimated N-dependent T_{m} and T_{N} agree with trends of observations.

Such a phase-boundary dispersivity is responsible for the thermodynamic behavior of water droplets and gas bubbles, particularly at the nanometer scales. These systems of undercoordinated molecular dominance have far-reaching physical, chemical, and biological effects because molecular undercoordination induced unusual bond-electron-phonon behavior, as afore discussed. Water nanodroplets and nanobubbles do follow the trend of T_{m} elevation and T_{N} depression because of the dominant fraction of undercoordinated skin molecules. Droplet size reduction raises the $\Theta_{\mathrm{DH}}\left(\omega_{\mathrm{H}}\right)$ and stretches the $\eta_{\mathrm{H}}(T)$ curve and, meanwhile, lowers the $\Theta_{\mathrm{DL}}\left(\omega_{\mathrm{L}}\right)$
and compresses the $\eta_{\mathrm{L}}(T)$ curve, which disperses the extremedensity temperatures. A bubble is just the inversion of a droplet; a hollow sphere like a soap bubble contains two skins-the inner and the outer. Both skins are in the supersolid phase, and the volume fraction of such a supersolid phase over the entire liquid-shell volume is much greater than simply a droplet. Therefore, bubbles demonstrate more significantly the supersolidity nature-elastic, hydrophobic, and thermally stable, which makes bubbles mechanically stronger and thermally more stable. ${ }^{6}$

5. CONCLUSIONS

Lagrangian solution to the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond oscillating dynamics has transformed the observed $\left(d_{x}, \omega_{x}\right)$ into the $\left(k_{x}, E_{x}\right)$ and thus enabled probing the potential paths for the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond relaxing with water cluster size, which is beyond the scope of other currently available approaches. Consistency between calculations and experimental observations on the $\mathrm{O}: \mathrm{H}-\mathrm{O}$ energy relaxation evidence consistently the persistence and significance of the asymmetric short-range interactions and Coulomb repulsion in the flexible, polarizable $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond and the molecular undercoordination induced $\mathrm{O}: \mathrm{H}-\mathrm{O}$ cooperative relaxation. Such an $\mathrm{O}: \mathrm{H}-\mathrm{O}$ bond cooperative relaxation in segmental length, phonon frequency, and cohesive energy disperses the quasisolid phase boundaries. $\mathrm{H}-\mathrm{O}$ energy gain elevates the melting point, and $\mathrm{O}: \mathrm{H}$ energy loss depresses the freezing point pertaining to water droplets and bubbles of which the undercoordinated molecules become dominant.

AUTHOR INFORMATION

Corresponding Author

*Tel.: 6567904517 . E-mail: ecqsun@ntu.edu.sg.

Author Contributions

\#Authors made equal contribution. CQ was associated with honorary appointments at the rest of the affiliations.

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

Financial support from National Natural Science Foundation (No. 21273191) of China is acknowledged.

- REFERENCES

(1) Huang, Y.; Zhang, X.; Ma, Z.; Zhou, Y.; Zheng, W.; Zhou, J.; Sun, C. Q. Hydrogen-Bond Relaxation Dynamics: Resolving Mysteries of Water Ice. Coord. Chem. Rev. 2015, 285, 109-165.
(2) Petkov, V.; Ren, Y.; Suchomel, M. Molecular Arrangement in Water: Random but Not Quite. L. Phvs.: Condens. Matter 2012, 24, 155102.
(3) Tsai, M. K.; Kuo, J. L.; Lu, J. M. The Dynamics and Spectroscopic Fingerprint of Hydroxyl Radical Generation through Water Dimer Ionization: Ab Initio Molecular Dynamic Simulation Study. Phvs. Chem. Chem. Phvs. 2012, 14, 13402-13408.
(4) Ostmeyer, J.; Chakrapani, S.; Pan, A. C.; Perozo, E.; Roux, B. Recovery from Slow Inactivation in K Channels Is Controlled by Water Molecules. Nature 2013, 501, 121-124.
(5) Kang, D. D.; Dai, J.; Sun, H.; Hou, Y.; Yuan, J. Quantum Similation of Thermally Driven Phase Transition and O K-Edge Absorption of High-Pressure Ice. Sci. Rep. 2013, 3, 3272.
(6) Zhang, X.; Huang, Y.; Ma, Z.; Zhou, Y.; Zheng, W.; Zhou, J.; Sun, C. Q. A Common Supersolid Skin Covering Both Water and Ice. Phvs. Chem. Chem. Phys. 2014, 16, 22987-22994.
(7) Erko, M.; Wallacher, D.; Hoell, A.; Hauss, T.; Zizak, I.; Paris, O. Density Minimum of Confined Water at Low Temperatures: A

Combined Study by Small-Angle Scattering of X-Rays and Neutrons. Phvs. Chem. Chem. Phvs. 2012, 14, 3852-3858.
(8) Lakhanpal, M. L.; Puri, B. R. Boiling Point of CapilaryCondensed Water. Nature 1953, 172, 917-917.
(9) Li, L.; Kazoe, Y.; Mawatari, K.; Sugii, Y.; Kitamori, T. Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion. L. Phvs. Chem. Lett. 2012, 3, 2447-2452.
(10) Qiu, H.; Guo, W. Electromelting of Confined Monolayer Ice. Phys. Rev. Lett. 2013, 110, 195701.
(11) Wang, C.; Lu, H.; Wang, Z.; Xiu, P.; Zhou, B.; Zuo, G.; Wan, R.; Hu, J.; Fang, H. Stable Liquid Water Droplet on a Water Monolayer Formed at Room Temperature on Ionic Model Substrates. Phys. Rev. Lett. 2009, 103, $137801-137804$.
(12) James, M.; Darwish, T. A.; Ciampi, S.; Sylvester, S. O.; Zhang, Z. M.; Ng, A.; Gooding, J. J.; Hanley, T. L. Nanoscale Condensation of Water on Self-Assembled Monolayers. Soft Matter 2011, 7, 53095318.
(13) Sun, C. Q.; Zhang, X.; Fu, X.; Zheng, W.; Kuo, J.-l.; Zhou, Y.; Shen, Z.; Zhou, J. Density and Phonon-Stiffness Anomalies of Water and Ice in the Full Temperature Range. L. Phvs. Chem. Lett. 2013, 4, 3238-3244.
(14) Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Mou, C. Y.; Chen, S. H. The Anomalous Behavior of the Density of Water in the Range $30 \mathrm{~K}<\mathrm{T}<373 \mathrm{~K}$. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18387-18391.
(15) Alabarse, F. G.; Haines, J.; Cambon, O.; Levelut, C.; Bourgogne, D.; Haidoux, A.; Granier, D.; Coasne, B. Freezing of Water Confined at the Nanoscale. Phys. Rev. Lett. 2012, 109, 035701.
(16) Moro, R.; Rabinovitch, R.; Xia, C.; Kresin, V. V. Electric Dipole Moments of Water Clusters from a Beam Deflection Measurement. Phvs. Rev. Lett. 2006, 97, 123401.
(17) Wilson, K. R.; Schaller, R. D.; Co, D. T.; Saykally, R. J.; Rude, B. S.; Catalano, T.; Bozek, J. D. Surface Relaxation in Liquid Water and Methanol Studied by X-Ray Absorption Spectroscopy. I. Chem. Phvs. 2002, 117, 7738-7744.
(18) Sun, C. Q. Relaxation of the Chemical Bond; Springer: Heidelberg, 2014; Vol. 108.
(19) Bergmann, U.; Di Cicco, A.; Wernet, P.; Principi, E.; Glatzel, P.; Nilsson, A. Nearest-Neighbor Oxygen Distances in Liquid Water and Ice Observed by X-Ray Raman Based Extended X-Ray Absorption Fine Structure. L. Chem. Phys. 2007, 127, 174504.
(20) Wilson, K. R.; Rude, B. S.; Catalano, T.; Schaller, R. D.; Tobin, J. G.; Co, D. T.; Saykally, R. J. X-Ray Spectroscopy of Liquid Water Microjets. I. Phvs. Chem. B 2001, 105, 3346-3349.
(21) Solveyra, E. G.; de la Llave, E.; Molinero, V.; Soler-Illia, G.; Scherlis, D. A. Structure, Dynamics, and Phase Behavior of Water in Tio2 Nanopores. I. Phys. Chem. C 2013, 117, 3330-3342.
(22) Huang, Y.; Zhang, X.; Ma, Z.; Zhou, Y.; Zhou, J.; Zheng, W.; Sun, C. Q. Size, Separation, Structure Order, and Mass Density of Molecules Packing in Water and Ice. Sci. Rep. 2013, 3, 3005.
(23) Hammer, N. I.; Shin, J. W.; Headrick, J. M.; Diken, E. G.; Roscioli, J. R.; Weddle, G. H.; Johnson, M. A. How Do Small Water Clusters Bind an Excess Electron? Science 2004, 306, 675-679.
(24) Siefermann, K. R.; Liu, Y.; Lugovoy, E.; Link, O.; Faubel, M.; Buck, U.; Winter, B.; Abel, B. Binding Energies, Lifetimes and Implications of Bulk and Interface Solvated Electrons in Water. Nat. Chem. 2010, 2, 274-279.
(25) Verlet, J. R. R.; Bragg, A. E.; Kammrath, A.; Cheshnovsky, O.; Neumark, D. M. Observation of Large Water-Cluster Anions with Surface-Bound Excess Electrons. Science 2005, 307, 93-96.
(26) Vacha, R.; Marsalek, O.; Willard, A. P.; Bonthuis, D. J.; Netz, R. R.; Jungwirth, P. Charge Transfer between Water Molecules as the Possible Origin of the Observed Charging at the Surface of Pure Water. L. Phvs. Chem. Lett. 2012, 3, 107-111.
(27) Marsalek, O.; Uhlig, F.; Frigato, T.; Schmidt, B.; Jungwirth, P. Dynamics of Electron Localization in Warm Versus Cold Water Clusters. Phys. Rev. Lett. 2010, 105, 043002.
(28) Baletto, F.; Cavazzoni, C.; Scandolo, S. Surface Trapped Excess Electrons on Ice. Phvs. Rev. Lett. 2005, 95, 176801.
(29) Turi, L.; Sheu, W. S.; Rossky, P. J. Characterization of Excess Electrons in Water-Cluster Anions by Quantum Simulations. Science 2005, 309, 914-917.
(30) Abu-Samha, M.; Borve, K. J.; Winkler, M.; Harnes, J.; Saethre, L. J.; Lindblad, A.; Bergersen, H.; Ohrwall, G.; Bjorneholm, O.; Svensson, S. The Local Structure of Small Water Clusters: Imprints on the CoreLevel Photoelectron Spectrum. I. Phvs. B: At., Mol. Opt. Phvs. 2009, 42, 055201.
(31) Nishizawa, K.; Kurahashi, N.; Sekiguchi, K.; Mizuno, T.; Ogi, Y.; Horio, T.; Oura, M.; Kosugi, N.; Suzuki, T. High-Resolution Soft XRay Photoelectron Spectroscopy of Liquid Water. Phys. Chem. Chem. Phys. 2011, 13, 413-417.
(32) Winter, B.; Aziz, E. F.; Hergenhahn, U.; Faubel, M.; Hertel, I. V. Hydrogen Bonds in Liquid Water Studied by Photoelectron Spectroscopy. L. Chem. Phys. 2007, 126, 124504.
(33) Buck, U.; Huisken, F. Infrared Spectroscopy of Size-Selected Water and Methanol Clusters. Chem. Rev. 2000, 100, 3863-3890.
(34) Otto, K. E.; Xue, Z.; Zielke, P.; Suhm, M. A. The Raman Spectrum of Isolated Water Clusters. Phvs. Chem. Chem. Phys. 2014, 16, 9849.
(35) Kahan, T. F.; Reid, J. P.; Donaldson, D. J. Spectroscopic Probes of the Quasi-Liquid Layer on Ice. I. Phys. Chem. A 2007, 111, 1100611012.
(36) Ceponkus, J.; Uvdal, P.; Nelander, B. Water Tetramer, Pentamer, and Hexamer in Inert Matrices. I. Phys. Chem. A 2012, 116, 4842-4850.
(37) Sun, Q. The Raman Oh Stretching Bands of Liquid Water. Vib. Spectrosc. 2009, 51, 213-217.
(38) Hirabayashi, S.; Yamada, K. M. T. Infrared Spectra and Structure of Water Clusters Trapped in Argon and Krypton Matrices. I. Mol. Struct. 2006, 795, 78-83.
(39) Shen, Y. R.; Ostroverkhov, V. Sum-Frequency Vibrational Spectroscopy on Water Interfaces: Polar Orientation of Water Molecules at Interfaces. Chem. Rev. 2006, 106, 1140-1154.
(40) Buch, V.; Bauerecker, S.; Devlin, J. P.; Buck, U.; Kazimirski, J. K. Solid Water Clusters in the Size Range of Tens-Thousands of H2o: A Combined Computational/Spectroscopic Outlook. Int. Rev. Phys. Chem. 2004, 23, 375-433.
(41) Cross, P. C.; Burnham, J.; Leighton, P. A. The Raman Spectrum and the Structure of Water. I. Am. Chem. Soc. 1937, 59, 1134-1147.
(42) Zhang, X.; Sun, P.; Huang, Y.; Ma, Z.; Liu, X.; Zhou, J.; Zheng, W.; Sun, C. Q. Water Nanodroplet Thermodynamics: Quasi-Solid Phase-Boundary Dispersivity. L. Phvs. Chem. B 2015, 119, 5265-5269.
(43) Tyrrell, J. W.; Attard, P. Images of Nanobubbles on Hydrophobic Surfaces and Their Interactions. Phys. Rev. Lett. 2001, 87, 176104.
(44) Teixeira, J. High-Pressure Physics - the Double Identity of Ice X. Nature 1998, 392, 232-233.
(45) Pauling, L. The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement. I. Am. Chem. Soc. 1935, 57, 2680-2684.
(46) Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Naslund, L. A.; Hirsch, T. K.; Ojamae, L.; Glatzel, P. The Structure of the First Coordination Shell in Liquid Water. Science 2004, 304, 995-999.
(47) Soper, A. K. An Asymmetric Model for Water Structure. I. Phvs.: Condens. Matter 2005, 17, S3273-S3282.
(48) Wikfeldt, K. T.; Leetmaa, M.; Ljungberg, M. P.; Nilsson, A.; Pettersson, L. G. M. On the Range of Water Structure Models Compatible with X-Ray and Neutron Diffraction Data. J. Phys. Chem. B 2009, 113, 6246-6255.
(49) Leetmaa, M.; Wikfeldt, K. T.; Ljungberg, M. P.; Odelius, M.; Swenson, J.; Nilsson, A.; Pettersson, L. G. M. Diffraction and Ir/ Raman Data Do Not Prove Tetrahedral Water. I. Chem. Phvs. 2008, 129, 084502.
(50) Nilsson, A.; Pettersson, L. G. M. Perspective on the Structure of Liquid Water. Chem. Phvs. 2011, 389, 1-34.
(51) Kuhne, T. D.; Khaliullin, R. Z. Electronic Signature of the Instantaneous Asymmetry in the First Coordination Shell of Liquid Water. Nat. Commun. 2013, 4, 1450.
(52) Kumagai, N.; Kawamura, K.; Yokokawa, T. An Interatomic Potential Model for H2o: Applications to Water and Ice Polymorphs. Mol. Simul. 1994, 12, 177-186.
(53) Zhang, J.; Chen, P.; Yuan, B.; Ji, W.; Cheng, Z.; Qiu, X. RealSpace Identification of Intermolecular Bonding with Atomic Force Microscopy. Science 2013, 342, 611-614.
(54) Guo, J.; Meng, X.; Chen, J.; Peng, J.; Sheng, J.; Li, X.-Z.; Xu, L.; Shi, J.-R.; Wang, E.; Jiang, Y. Real-Space Imaging of Interfacial Water with Submolecular Resolution. Nat. Mater. 2014, 13, 184-189.
(55) Wang, B.; Xin, M.; Dai, X.; Song, R.; Meng, Y.; Han, J.; Jiang, W.; Wang, Z.; Zhang, R. Electronic Delocalization in Small Water Rings. Phys. Chem. Chem. Phvs. 2015, 17, 2987-2990.
(56) Li, J. Inelastic Neutron Scattering Studies of Hydrogen Bonding in Ices. I. Chem. Phvs. 1996, 105, 6733-6755.
(57) Kolesnikov, A.; Li, J.; Parker, S.; Eccleston, R.; Loong, C.-K. Vibrational Dynamics of Amorphous Ice. Phys. Rev. B: Condens. Matter Mater. Phvs. 1999, 59, 3569.
(58) Li, J.; Ross, D. Evidence for Two Kinds of Hydrogen Bond in Ice. Nature 1993, 365, 327-329.
(59) Ortmann, F.; Bechstedt, F.; Schmidt, W. G. Semiempirical Van Der Waals Correction to the Density Functional Description of Solids and Molecular Structures. Phys. Rev. B: Condens. Matter Mater. Phvs. 2006, 73, 205101.
(60) Sun, H. Compass: An Ab Initio Force-Field Optimized for Condensed-Phase Applicationsoverview with Details on Alkane and Benzene Compounds. I. Phys. Chem. B 1998, 102, 7338-7364.
(61) Sun, C. Q.; Zhang, X.; Zheng, W. T. Hidden Force Opposing Ice Compression. Chem. Sci. 2012, 3, 1455-1460.
(62) Huang, Y.; Zhang, X.; Ma, Z.; Zhou, Y.; Zhou, G.; Sun, C. Q. Hydrogen-Bond Asymmetric Local Potentials in Compressed Ice. L Phys. Chem. B 2013, 117, 13639-13645.
(63) Zhang, X.; Huang, Y.; Ma, Z.; Zhou, Y.; Zhou, J.; Zheng, W.; Jiang, Q.; Sun, C. Q. Hydrogen-Bond Memory and Water-Skin Supersolidity Resolving the Mpemba Paradox. Phys. Chem. Chem. Phys. 2014, 16, 22995-23002.
(64) Zhang, X.; Yan, T.; Huang, Y.; Ma, Z.; Liu, X.; Zou, B.; Sun, C. Q. Mediating Relaxation and Polarization of Hydrogen-Bonds in Water by Nacl Salting and Heating. Phvs. Chem. Chem. Phys. 2014, 16, 24666-24671.
(65) Sun, C. Q.; Zhang, X.; Zhou, J.; Huang, Y.; Zhou, Y.; Zheng, W. Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer Than Four Neighbors. I. Phvs. Chem. Lett. 2013, 4, 2565-2570.
(66) Zhang, X.; Sun, P.; Huang, Y.; Yan, T.; Ma, Z.; Liu, X.; Zou, B.; Zhou, J.; Zheng, W.; Sun, C. Q. Water's Phase Diagram: From the Notion of Thermodynamics to Hydrogen-Bond Cooperativity. Prog. Solid State Chem. 2015, DOI: 10.1016/j.progsolidstchem.2015.03.001. (67) Liu, Y.; Wu, J. Communication: Long-Range Angular Correlations in Liquid Water. J. Chem. Phys. 2013, 139, 041103.
(68) Li, X. Z.; Walker, B.; Michaelides, A. Quantum Nature of the Hydrogen Bond. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6369-6373.
(69) Zhao, M.; Zheng, W. T.; Li, J. C.; Wen, Z.; Gu, M. X.; Sun, C. Q. Atomistic Origin, Temperature Dependence, and Responsibilities of Surface Energetics: An Extended Broken-Bond Rule. Phvs. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 085427.
(70) Harich, S. A.; Hwang, D. W. H.; Yang, X.; Lin, J. J.; Yang, X.; Dixon, R. N. Photodissociation of H2o at 121.6 Nm: A State-to-State Dynamical Picture. I. Chem. Phys. 2000, 113, 10073-10090.
(71) Debenedetti, P. G.; Stanley, H. E. Supercooled and Glassy Water. Phys. Today 2003, 56, 40-46.
(72) Sun, C. Q. Thermo-Mechanical Behavior of Low-Dimensional Systems: The Local Bond Average Approach. Prog. Mater. Sci. 2009, 54, 179-307.
(73) Gu, M. X.; Zhou, Y. C.; Sun, C. Q. Local Bond Average for the Thermally Induced Lattice Expansion. L. Phys. Chem. B 2008, 112, 7992-7995.
(74) Omar, M. A. Elementary Solid State Physics: Principles and Applications; Addison-Wesley: New York, 1993.
(75) Lindemann, F. A. The Calculation of Molecular Natural Frequencies. Phvs. Z. 1910, 11, 609-612.
(76) Moore, E. B.; Molinero, V. Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice. Nature 2011, 479, 506-508.

[^0]: Received: April 24, 2015
 Revised: June 26, 2015
 Published: June 29, 2015

